
AD-R171 664 A COLLECTION OF ALFA EXEANPLESU) CRNEGIE-MELLON UNIV I
PITTSDURGH PR A N HADERNANN 05 NOV 91 DAAS7-2-C-JI?3

UNCLRSSIFIED F/G 9/2 NLllllllll

, ,;.4 *'.*

.%BB1.0 1" Q2 jW

WoW

1-L2

L _ 11112.0

~ *4O

11111 111U

1.25 1111.4 111.

MICROCOPY RESOLUTION TEST CHART

.0..

40. .

%%

4 .'..C.. .
;..

,-'. ,"........-. , . -.* .\ ,,...,: ,-'. .\ --.. ,.'.,.,,

, ,. a ,',- " : " ' F - d " d L , r . . . 4-

a

4.,
tD

A Collection of Alfa Examples

A. N Habermann a.

Carnegie-Mellon University

Pittsburgh, Pa 15213

Contract DAA-07-82-C-J173

.-SP

DTIC
ELECTE

SEP 5 1986-

Abstract

Alfa is a functional programming language used in the context of Programmatics, a
programming environment in which one can apply rewriting rules and in which one can
express equivalence of functional expressions. Alfa provides strong typing, information
hiding. suitable infix notations, overloading and modularization. The examples are
presented without an explanation ol the Alta language.-Detailed, though partly obsolete,
information is found in the documents "Notes on PrograWiatics" Part I and Part II.

This work is supported by the Research;Division of Coradcom, FtMonmouth, N.J.

II.

MPIIIPJUTON SATEMENT A
uppuwu toi public releoiel

DIWuibution Vr bmtro4 te

96 7 7 186.

anh 5 November 1981 Alfa Examples page

Table of Contents

1 Calendar.2
2 Vectors. 2
3 Local Names. 3

. Ala Grammar. 7

.Standard Functions.8

A~

anh 5 November 1981 Alta Examples page 1

1 Calendar.

The goal of the example is a program that finds the weekday of a given date within the period 1900

through 2099.

module CALENDAR

weekday (SUN. MON, TUE. WED, THU. FRI, SAT)
month : = (JAN, FEB. MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC)

day := nat for idE(1..31)
year := nat for id E (1900.. 2099)
date (year, month, day)

Weekdayof : date - weekday =
weekday # (((id + id%4) 0 (first - Base a flail) + Map flail + last) % 7)

where

Map : month - int := (1 436 1 462 5035) # (month ?id)

Base • month -- year = id = JAN or id = FEB = 1901 ,1900

end CALENDAR

seq # n returns the nth element of "seq". This function corresponds to array indexing:
"seq[n]".

seq ? elem returns the index of the leftmost occurrence of "elem" in "seq". (For new
domains, it corresponds to the functions "POS" in Ada and "ord" in Pascal.)

n % p is the remainder of the integer division of integer n by natural p.

anh 5 November 1981 Alifa Examples page 2

2 Vectors.

An example of a generic module.

module VECS(obj) :=

vec (obi.)
Binop : (obi, obj) - obj

Vecop ! Binop: (vec, vec) --* vec : = eql alen aID o//; Error

end VECS

An example of the use of generic module "VECS".

module REALVECS =

use REALS, VECS(real)

"+ " (vec, vec) -- vec - Vecop ! REALS." +"
(vec, vec) - vec . = Vecop ! REALS.'

end REALVECS

seq /seq represents the function "transpose".

%I-b* S , \

anh 5 November 1981 All a Examples page 3

3 Local Names.

An example of the problems that may arise from the use of local names.

Problem Statement.

Determine the multiplicity of the (value of the) first element of a non-empty sequence of integer

numbers.

First Solution.

Compare the first element with each element of the input sequence and count the number of times

you find equality.

Program 1.
Firstmultcount : (int..) nat = + 0 a(first = id =* 1 ; 0)

The functional "a" is what is called MAPCAR in Lisp. Thus, the equality comparison with the first

element is applied to all elements of the input sequence and each element is mapped into 1 or 0

depending on the outcome TRUE or FALSE. The final result is obtained by adding all elements of the

sequence of zeros and ones. Addition is a dyadic function of a special class of functions whose

output type is the same as that of the first element of the input sequence. These functions are

extensible to non-empty sequences of arbitrary length. I envisage that the extension of such a dyadic

function is automatically derived from the original dyadic definition by the language system so that

there is no need for an explicit functional "REDUCE" as represented in APL by the symbol "". The

extended function is left associative so that the extension of dyadic functions such as subtraction,

division or remainder have the desired result for input sequences of more than two elements.

Now we introduce a local name for the first element and rewrite the program.

Program 2.
Firstmultcount: (int. .) nat =

let u:= first in + oa(u = id 1;0)

This program works the same way as the first program with the slight difference that the first

element is remembered in the local object named "u".

-p ~p -~ - -~

-- ~ - -

~ ~ '~*j~**~..4-. "-

anh 5 November 1981 Alfa Examples page 4

Second Solution.

Distribute the first element over all elements of the input sequence, forming a sequence of pairs

(first, y) where y is one of the elements of the input sequence. Count the number of equal pairs in this

sequence of pairs.
Program 3.

Firstmultcount :(it.i .. nat = + a a(eql - 1 ; 0) o (first > id)

The symbol " " represents distribution from left to right The program distributes the first element,

applies the equality test to every pair and adds the number of resulting ones and zeros.

Program 4.
Firstmultcount: (int..) -- nat =

let u:= first in + oa(eql 10) a(u * >id)

This program works basically the same as the third program.

The question is whether or not there is much difference between the first two programs and the last

two programs. Before turning to the discussion on the next page, you should form your opinion about

the four programs on this page.

d!

4 , , , , , ,"q. ,. ' '.'.-... - •

I,, ' .,,,-,,' ,,,; ,..-,-..,.. -?,.-,,, ?..,.

anh 5 November 1981 Alfa Examples page 5

Discussion.

Do you believe that all four programs are correct?

If you do, you must have another way of attaching meaning to functional programs than I do. In my

opinion, Program 3 is correct, but Program 1 is incorrect. The problem with Program 1 is the

application of the function

(first = id -1;0)

to each individual element of the input sequence. It is alright to apply function "id" to an integer

number (that is what the elements of the input sequence are). but it is not alright to apply function

"first" to an integer number. This function is defined for non-empty sequences, but not for atomic

objects. Of course, we meant to apply function "first" only once to the input sequence and then use

* . the result for comparison with the elements of the input sequence. But that is not what we get. With

the implementation of Program 1, function "first" is indeed applied to every individual element of the

* input sequence which causes tho- erroneous application of function "first" to an atomic object. It is

* clear that a similar error does not occur in Program 3. because there function "first" is applied exactly

* once to the entire input sequence.

There is no problem in interpreting Program 4, because the local object "u'*is used only on ce.

However, what about Program 2? I can see two possible interpretations: one that makes the program

correct and another that makes the program incorrect. The first interpretation considers "u" to be a

local constant that is computed only once (if needed) per execution of function "Firstmultcount". If

* you accept this interpretation, Program 2 is correct, because each element is now compared to a

constant.

The second interpretation considers "u" to represent the expression on the righthand side of the

definition symbol ": = ". If you accept that interpretation, you agree that the program is incorrect,

because it now has the same flaw as Program 1.

anh 5 November 1981 Alif a Examples page 6

Note that the problem is not a matter of lazy evaluation, but one of interpreting the definition of the

local object. The two different interpretations correspond in fact to the Algol concepts of "call-by-

value" and "call-by-name".

I am not suggesting thatone interpretation is better than the other. I also don't care much which

interpretation is more commonly used than the other. The point I am trying to make is that the

problem of being forced to choose and explain the semantics arises because of the introduction of

local names. No explanation would be necessary if the concept of local names is not introduced at all.

That, in my opnion, reduces the complexity of a language and avoids the likely occurrence of

misunderstanding among programmers. You may have a trivial solution to the problem, or you may

want to convince me that the added complexity is a price well worth to pay. I am listening.

Ii

,* 4 . . . ,- .'".*.' - , ,., , ' - ., " ., . r ,,. : . . .,.,,-

anh 5 November 1981 Alta Examples page 7

1. Alfa Grammar.

Program Modulesequence

Module module Ident {(Generictypelist))
{use Modnamelist I
Decisequence
(where Auxdeclsequence)

end Modname

Generictype Ident

Decl, Auxdecl -. Domaindecl I Ciassdecl IFundecl Formdecl

Domaindeci Ident:= NewDomaindef Ildent:= Domaindef (for Predicate)
NewDomaindef - ~ (Identlist)
Domaindef -. (atom) Domain
Domain - ~ Generictypename IDomainname I(Domainlist{.{))

Classdecl* Ident:= Classdef (for Predicate)
Classdef Domain -~ Domain
Class Classname I Classdef

Fundecl Ident:Ofass:= Expr
Formdecl ldent ! Param GClass:= Expr
Param Domain I Class I (Paramlist{.{.

Expr Dyad { Expr; Expr)
Dyad Term (Funsym Term)
Term Factor {a Facto r)*
Factor f~ Funal) 0Primary(!Primary)"J Formname! Factor

Primary Funname I Funsym I Const I(Exprlist)
Funal a a13!
Funsym + @#$<

<> E//Q* *>C:l Ulf

Shortharids are used f or strings and ranges. E.g.. "functional". (2. . 17)

The functionals a. and -y stand for "all", "filter" and "combine" resp.

% %

anh 5 November 1981 Alta Examples page 8

II. Standard Functions.

Monadic Functions

Name Specification Operation

Identity id: x -- x maps object into itself
Nil test null : x -. bool TRUE iff input is the empty seq
Is atom atom: x - bool TRUE iff input is an atom
Is set $: z --+ bool TRUE iff multiplicity of every elem of input seq is one
Const function const : x -* const returns that const on the domain of x

First element fst : s --] x returns the first element of non-empty seq s
Second element snd : (x y.) - y input must have at least two elems: returns second elem
Tail end ti: s -. z all but the first element of non-empty seq s
Head part hd : s -- p z all but the last element of non-empty seq s
Last element Ist• s -i x returns the last element of non-empty seq s

Length len : z -- znat returns the length of seq z
Make seq seq • x -- s creates sequence with input as single element
Make range run nat -- s generate range 1 .. input
Make set set z -- z reduce multiplicity of elems of input seq to one
Reverse rev z -* z reverse the elements of input seq z

Shift left left z -- z move first elem (if any) to rear of input seq z
Shift right right: z -- z move last elem (if any) to front of input seq z
Extremities edge: z --+ z form pair of first and last elem if input seq non-empty
Fold seq fold : z -+ z seq formed by repeatedly pealing off edges until empty
Unfold seq unfold z - z remove all inner parentheses if input seq non-empty

% ." - - - . . o - - o -. - , " -. . . - -. % -. - -°

anh 5 November 1981 Alta Examples page 9

Dyadic Functions

Name Representation Operation

Push elem x > z- s add x as first elem to seq z
Append elem z < x -* s add x as last elem to seq z
Join seqs z 8 z -- z concat seqs, preserving the order of the elems
Distr. left (y.) <" x - ((y, x).) distribute x over all elems (if any) of seq z
Distr. right x *> (y .) -- ((x, y) .) distribute x over all elems (if any) of seq z

Select s # nat - x select elem s[nat] from non.empty seq s

Collection s # (nat.) - z form seq of selected elems s[nat]
Replicate nat # x - (x..) form seq by replicating x nat times
Rotate z @ int --+ z rotate input over int elem positions
Index s ? x --. znat 0 if x is not in seq s, else index of leftmost x in seq s

Equality x = y -4 bool TRUE iff equal atoms or both nil or corresp elems equal
Transpose (x .) // (y) - ((x. y) form seq of pairs of corresponding elems
Remainder z % (x ..) -- z remove all occurrences of elems x (if any) from input seq z
Split seq z / (x..) -* z split input seq z every time you find one of the elems x
Partition z fl nat --i z partition input seq into slices of length nat

Union z U z - z form the union of the input sets
Intersection z fl z - z form the intersection of the input sets
Remove elem z - x --+ z if x is in set z, remove it from set z
Insert elem x +>z- s if x is not in set z, add x as first elem of set z
Insert elem z<+ x-s if x is not in set z. add x as last elem of set z

Member x E s - bool TRUE iff x is an elem of set s
Subset z c z - bool TRUE iff first set is a subset of second set
Include z z -- bool TRUE iff first set includes second set

•- 4*i

~. %*

~a

a
.. .

,o -

g

:.;

-. 4 . . . " . .
. . -. . .-..' . . -. , '. " -"

.'m '.. . o o.** '- o %
_ ,o *. 'o " °.* o** ,- . . ', . o . . °o -- , o, - - . .o ** . o - . . . o" .° .-. I -

